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Abstract

The optimum shape and axial variation of electrical loading (power ratio) of a MHD generator are obtained for a prescribed fractional power
output and pressure drop along the generator. These optimum solutions are obtained using the ADS (Automatic Design Synthesis) optimization
code. The objective function (duct size) for the prescribed design conditions was obtained by Carter for a quasi 1-D flow with a simple power
law model for electrical conductivity. In this work, a generalized numerical optimization scheme, capable of incorporating any arbitrary electrical
conductivity model is presented. The numerical solutions obtained using this scheme is validated with analytical results obtained by Carter. We
demonstrate the use of this scheme to minimize the volume of a duct with a hypothetical power law model incorporating the effect of residence
time (function of inlet Mach number) on the electrical conductivity. We further demonstrate the use of this scheme for obtaining the optimum

shape of a MHD generator using an E-beam generated ionized gas stream.
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1. Introduction

A MHD generator essentially converts the kinetic energy of
a conducting fluid directly into electrical energy without the
use of any rotating machinery. MHD-based power generation
has several economic and ecological advantages. Higher effi-
ciencies, lack of rotating machinery (turbines), reduced main-
tenance costs, less warm water effluents are some of the advan-
tages of using MHD-based power generation. Due to these rea-
sons, there was a flurry of activity in developing ground-based
MHD generators in the sixties and early seventies. Open-cycle
and closed-cycle MHD generators were the two main kinds of
MHD systems under consideration, classified on the basis of the
working fluid and the heat source. Open-cycle MHD generators
usually operate with the combustion products of fossil fuels as
the working fluid. Closed-cycle MHD generators, usually more
suitable for operating with nuclear reactor heat sources, use a
seeded noble gas or liquid metal as the working fluid. In this
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paper, our focus is on a MHD generator with an ionized gas
(plasma) stream as the working fluid.

Due to economic reasons and technical hurdles, research and
development in ground-based MHD power generation slowed
in the eighties and early nineties. In the recent years, there has
been a resurgence of interest in MHD systems for aerospace
applications. The possibility of using a MHD power generator
at the inlet of an air-breathing hypersonic engine has received
considerable attention since the mid-nineties ([1-4] and refer-
ences therein). The generated electricity could be used to power
various devices on-board or to provide MHD acceleration of
the engine exhaust flow (MHD-bypass concept). Additionally,
the MHD generator could be used as a means to reduce total
enthalpy at the engine inlet and could thus be used as a con-
trol device to allow operation of scramjets under off-design
conditions. Given the potential impact of MHD generators in
aerospace applications, there is a great need for design, analy-
sis and optimization of MHD generators.

Design and analysis of MHD-based systems is a difficult
task. Multi-dimensional simulation of the fluid-flow and heat
transfer characteristics of an MHD generator is beset with
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Nomenclature

magnetic field

specific heat per mass unit at constant pressure
electric field

current density

power ratio (electrical loading factor)
Mach number

pressure

stagnation pressure at the duct inlet
gas constant (per unit mass)
temperature

stagnation temperature at the duct inlet
velocity

mass flow rate

< <
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x distance along the channel

Greek symbols

B constant

) variable used in the definition of ratio between stag-

nation pressure at the inlet to the stagnation pressure
at any given location in the channel

v natural logarithm of ratio between stagnation tem-
perature at the inlet to the stagnation temperature at
any given location in the channel

o electrical conductivity
y ratio of specific heats
P density

several challenges. The governing equations are coupled non-
linear PDEs with additional complexity due to the Lorentz
forces in the momentum equation and an associated Joulean
heating term in the energy equation. An accurate calculation
of these terms requires the flow equations to be coupled with an
equation describing the electric potential, thus making it diffi-
cult for numerical simulations. Additionally, the computational
effort is another important consideration in the use of multi-
dimensional simulations of MHD generators.

Design of practical MHD-based systems depends on sev-
eral constraints such as overall system efficiency, cost and size.
Simplified analyses based on quasi 1-D assumptions can be
of great value in the design/analysis of MHD-based system.
Before tackling the overall system issues, it is necessary to
examine the feasibility of operating MHD channels and opti-
mizing them for a given set of objective function and design
constraints. The MHD generator could be optimized for one of
many quantities, based on system design considerations. For ex-
ample, one could minimize the duct size to reduce heat losses
and reduce material cost, or one could optimize the maximum
power density for a given size of the MHD generator. The over-
all system design can be greatly facilitated if the designer could
optimize the generator for different criteria and constraints and
pick the configuration best suited for a practical engine design.

The electrical conductivity is an important aspect in the
design and operation of a MHD-generator, particularly for
aerospace applications. While seeding was considered as a
prime candidate for enhancing the electrical conductivity of
ground-based MHD generators, several non-equilibrium tech-
niques have been suggested for aerospace applications [4]. In
order to study the design and optimization of MHD generators,
it is necessary to incorporate a realistic electrical conductivity
model in the analysis. Hence there is a need to develop a frame-
work to conduct optimization studies wherein; any arbitrary
electrical conductivity model can be used by the designer. Sev-
eral design, analysis and optimization studies exist with regards
to ground-based MHD generators [5—16]. Optimization studies
such as [5-7] were conducted with several simplifying assump-
tions and analytical expressions for an objective function was

derived for a given set of design conditions/constraints. These
analyses assumed the electrical conductivity to be constant or
obey some prescribed power law dependence. Neuringer [5]
considered the problem of optimizing power from a channel
with a constant cross-section and uniform electrical conductiv-
ity. Swift-Hook and Wright [6] considered the problem of min-
imizing the duct length/volume for a constant Mach-number
generator. They assumed an electrical conductivity model hav-
ing a power law dependence on temperature and pressure.
Carter [7] extended the analysis of [6] to optimize the size of
a MHD generator for a given power output and a given pressure
drop. If the electrical conductivity were assumed to be depen-
dent only on pressure and temperature, Carter’s analysis could
optimize both the gas velocity (Mach number) and electrical
loading factor (power ratio) along the length of the duct. Carter
further extended the electrical conductivity model of Swift-
Hook and Wright to include the effects of elevated electron tem-
peratures. A power law dependence on (uB — E)/p was used
to incorporate the effects of velocity and K (local power ra-
tio). With this electrical conductivity model, however, Carter’s
analysis was unable to optimize inlet gas velocity (Mach num-
ber). The MHD duct could be optimized for minimum size for a
prescribed inlet Mach number, yielding the optimum axial vari-
ation of the power ratio (K).

In this work, we have extended Carter’s analysis to include
any arbitrary conductivity model. The optimization is accom-
plished using a general-purpose optimization program called
ADS [17]. The numerical scheme developed in this paper can
be used to optimize the size of a MHD generator for any given
electrical conductivity model or discrete axial electrical con-
ductivity distribution for a prescribed power output and pres-
sure drop. We have validated this numerical scheme by compar-
ing our results with the analytical results of Ref. [7]. We have
further demonstrated the generality of our scheme by introduc-
ing a hypothetical conductivity model that not only captures
the effects of elevated electron temperatures due to the elec-
tric field, but also accounts for the effect of residence time on
the electrical conductivity. With this simple electrical conduc-
tivity model, we have shown that it is possible to optimize the
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size of the MHD duct while optimizing both the inlet Mach
number and the axial variation of the electrical loading. Us-
ing our optimization scheme, we further demonstrate its use in
optimizing a MHD generator, using non-equilibrium ionization
techniques for possible hypersonic aerospace applications. We
have done so to demonstrate ability of our numerical framework
to compute realistic variable electrical conductivity using finite-
rate chemical kinetic models. E-beams are considered to be
the most energy-efficient non-equilibrium ionization technique
[4,18]. Hence, as an example, we investigate the optimization
of a MHD generator with e-beam generated air plasma. An ex-
perimentally validated e-beam chemistry model [19] is used to
compute the electrical conductivity in our optimization frame-
work. We present optimization of the MHD-generator volume
for various e-beam electron production rates and free-stream
pressures.

2. Basic equations and theory

In this paper, we follow the analysis of Carter [7] for opti-
mizing an infinitely segmented Faraday generator. The calcu-
lations use a 1-D flow model of a perfect gas with constant
specific heat. The electrical conductivity and Mach number are
allowed to vary along the length of the channel. The magnetic
field is assumed to be constant and the axial currents are as-
sumed to be zero.

The quasi 1-D steady flow equations are as follows:

Continuity equation: puA =W 1)
. du dp
Momentum equation: pu—+ — 4+ JB =0 2)
dx  dx
. d 1 2
Energy equation: ,oud— CpT + Eu +JE=0 3)
x
Equation of state: P = pRT @
Modified Ohm’s law: J =ocuB(1 — K) (®)]

In the above equation, the electrical load factor K is defined
as the fraction of the total power generated that is actually ex-
tracted. In an MHD generator, the total MHD power generated
per unit volume is J Bu. From the total power generated, the
total power extracted is J E, while the remainder (/2 /o) is dis-
sipated as Ohmic loss in the gas. Based on these considerations,
the electrical loading factor, K = E /u B. For a MHD generator,
0<K<l1.

In Ref. [7], the electrical conductivity of the gas is given by
the power law

T y< P >—(Z+U}) 2
o=0—) (5 X211 - K)"” (6)
<TSO> PSO
where Q, v, z, w, Ty, and Py, are given constants and
_ u? _r- 1)M2
2C,T 2
where
y u
C,=———R; =
ERO) JYRT

The electrical conductivity model in Eq. (6) was an improve-
ment of the power-law model suggested in Ref. [6]. The power-
law model suggested in Ref. [6] is a phenomenological model,
relating the electrical conductivity to temperature and pressure
of the gas. Carter extended it to include the effect of elevated
electron temperature by introducing a power-law dependence
on (uB — E)/p. Thermal ionization of a gas, leading to the
production of charged species and hence higher conductivity,
is directly proportional to the gas temperature. The collision
frequency of the charged species with neutrals acts as a op-
posing force or “drag” on the charged species against the in-
fluence of the electric field. At higher pressures, the collision
frequency between charged species and neutrals increase lead-
ing to a reduction in the conductivity. Also, at higher pressures
the possibility of recombination of positive and negative species
via collisions is higher. Hence the electrical conductivity scales
inversely as the pressure. The influence of electric field is to
accelerate the electrons to energies appreciably higher than the
thermal energy. At lower pressures, the mean-free-path of elec-
trons is higher allowing the electrons to acquire greater energy.
These ideas form the basis for the expression for electrical con-
ductivity given in Eq. (6). The weakness of the conductivity
model suggested by Carter is that it does not take into consider-
ation the effect of gas velocity (proportional to X) on “residence
time” and its impact on the gas kinetics for producing charged
species. Hence, the model would lead to a monotonic decrease
in duct-size with increasing gas velocity. This issue has been
addressed in Section 4.2 where the conductivity model is mod-
ified to include the effect of residence time on the gas kinetics.
In the examples discussed by Carter, the typical values of ‘y’
range from 7 to 11, typical values of ‘z’ range from 0.6 to 1 and
the typical values of ‘w’ range from O to 4. The value of ‘w’
= 0 implies that the electrical conductivity is not influenced by
the electric field (no elevated electron temperature effects).

The flow equations can be expressed in terms of the stagna-
tion values using the adiabatic law

In| — )]=8In| = )| =8In(1 + X) @)
p T

where, = £,
Eq. (7) can be written as

ldp 1 dps B d

= -———{1+X
pdx pg dx 1—|—de( +X)
Egs. (2) and (3) can be written as
1dpy  BXdTy  ouB*(1-K) _0 @®
ps dx T, dx p
1+ X)dT, B*(1-K
BULX) AT, ouB(1-K) o)
KT, dx )4
Assume,
T
1n<@> — B +); 1n<ﬁ> = (10)
Ps Ts

In Eq. (10) Py, and T, are the stagnation pressure and tem-
perature at the inlet of the duct. Py and 7 are the stagnation
conditions at any point in the duct. At the inlet, P; = Py, and
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Ts, = T, hence § = v = 0. The fractional power output, and
hence the value of v at the exit is decided by the designer. The
pressure ratio is a design parameter usually fixed by the com-
pressor power; hence the value of (8 + v) at the exit is fixed.
Hence at the exit, we have, v = vy (prescribed on the basis
of the fractional power output) and 6 = §;. For a given value
of fractional power output (based on v1) and pressure ratio, §
would be a function of v. Based on Egs. (7) and (10), X would
also be a function of v.

Egs. (8) and (9) can be used to get
d (1+X)(1-K)
dv K
dx B+ X)p
dv  oB2QBRTX)2K(1 —K)
The optimization problem is to determine the variation of X (v)
and K (v) for a given value of v and B(8; + v1), so as to min-
imize the duct size. For a constant Mach number generator, the
fractional output power is (1 —e™") [6]. The designer could be
interested in either reducing the length, the cross-sectional area
or the volume of the duct for a given set of fractional output
power and pressure ratio (= e #@1+vD) The general form of
the duct size can be written as,

V]

S(n):/A(x)”d—xdv (13)
dv
0
where, A(x) is the cross-sectional area of the duct and § = §;
at v = v at the end of the duct.

Based on Eq. (13), the designer might choose to minimize
duct length (n = 0), duct surface area (n = 1/2) or duct vol-
ume (n = 1). Heat losses and friction have a large impact on
the performance of the MHD generator. Cost of the magnetic
field is also an important design consideration. Heat losses and
the magnetic field are proportional to the surface area. Hence,
if the designer wants to optimize the shape of the MHD gen-
erator for a given power output and pressure ratio, it is best to
minimize the surface area from an overall design standpoint.
As mentioned above, this could be accomplished by choosing
n =1/2 in Eq. (13) (for a duct with a square cross-section
the minimum duct surface area would be 45(1/2)). In general,
minimization of Eq. (13) would yield the optimum variation of
X (v) and K (v) for a given value of v; for a chosen value of n.

At this point, our analysis deviates from that outlined by
Carter. Carter simplified Eq. (12) using the power law for elec-
trical conductivity (Eq. (6)). The simplified expression for %
is used in Eq. (13). Carter minimized the simplified form of
Eq. (13) to obtain analytical expressions for the variation of X
and K as functions of the power law exponents, namely w, y
and z. These analytical expressions are valid only if the elec-
trical conductivity (o) can be expressed in the power law form
shown in Eq. (6), and hence are of limited usefulness in opti-
mizing MHD generators where the electrical conductivity may
not obey such a power law, as in the case with non-equilibrium
ionization methods.

In this work, Eq. (13) is the cost (objective) function that
is minimized using the ADS optimization code, without mak-
ing any simplification for the electrical conductivity in Eq. (12).

(1)

(12)

Any given model of electrical conductivity can be incorporated
in this numerical scheme to optimize the duct size. The numer-
ical scheme is explained in the next section.

3. Numerical scheme

The cost function to be minimized is Eq. (13) subject to the
following conditions

X and § are functions of v;

8 = &1 at v = v at the end of the duct;

§ = v = 0 at the entrance of the duct;

K is determined by an algebraic simplification of Eq. (11),
namely

K=1|1 L7 14
_[ +(1+X)E} (14)

v

The reasons for conditions 1-3 were explained in Section 2.
Conditions 1, 2 and 3 can be satisfied if one assumes the fol-
lowing expression for &.

8(\1):A(1 —exp(—Bv)) (15)

where,

1
Bz__ln(l_a_l)
V1 A

Similarly, X (v) can be written as
X(v) =X, +X2(1 —exp(—X3v)) (16)

A, X1, X3, X3 are the four design variables that can be varied to
minimize the cost function for a given §; and v;. In this work,
we present results for cases wherein there are only two design
variables, namely, A and X;. In other words, K is a function
of v, whereas X (and hence Mach number) is constant along the
length of the generator. We assume a constant Mach number for
the optimization process since Carter shows that the reduction
in the optimum duct size with a varying Mach number is less
than a fraction of a percent as compared to a constant Mach
number duct.

The ADS solver is used to minimize Eq. (13) using a
gradient-based optimization technique explained below. The
ADS code solves the non-linear constrained optimization prob-
lem

Minimize f ()} )

subject to the inequality constraints
Gi(X)<0, j=1,N;

and equality constraints
Hy(X)=0, k=1,N;

where the vector X = (x1,x2,x3,...,xnN) is the vector of de-
sign parameters. ADS employs the method of steepest descent

which leads to the iterative solution procedure for X given by

)?n+l — )?n +C.§n
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where the superscript 7 is the iteration counter (optimization
cycle), S is the vector search direction, and ¢ is a scaling
parameter. The optimization routine converges when the rel-
ative and absolute change in the objective function are less
than a user-defined convergence criterion. If F(0) were to be
the value of the objective function corresponding to the ini-
tial design, the absolute change in the objective function is
defined as e¢F(0). In this work, ¢ was set equal to 0.001.
The relative change in the objective function is defined as
ICF (XM — £(X™)/(f(X™)]. The convergence criterion for
relative change in the objective function was set equal to 0.001.

Initial values are chosen for the design variables A and X.
As explained above, any conductivity model can be used to
evaluate Eq. (12) (which is a part of the integrand in Eq. (13)).
In Section 4.3 we show how a finite-rate chemistry model can
be used to obtain a spatially varying electrical conductivity,
which is then used to evaluate Eq. (12). Eq. (13) is integrated
numerically using an integration step of 10™*v to obtain the
cost function. The ADS optimizer uses this cost function to vary
the design variables (A and X1), using the procedure explained
above to obtain the optimum cost function. The design variables
(A and X) corresponding to the optimum value are then used
to evaluate K (v) and X (v), using Egs. (14)—(16).

4. Results and discussions

In this section, we demonstrate the use of our numerical
scheme to minimize the volume of a MHD generator for a
given fractional power output and pressure ratio. We do so, us-
ing conductivity models with increasing degrees of complexity
as outlined below

e Power law conductivity model: We validate our numerical
scheme comparing our results with the analytical solutions
for the power law conductivity model proposed by Carter
(Eq. (6)).

e Extended power law conductivity model: We extend Car-
ter’s power law conductivity model to account for the effect
of residence time of the gas flow on the electrical con-
ductivity. This new conductivity model yields the optimum
inlet Mach number and the optimum variation of the elec-
tric loading factor along the duct, for minimum duct size.

e Finite-rate e-beam induced air chemistry plasma model:
An experimentally validated finite-rate chemistry model is
used to demonstrate the use of the proposed scheme to
compute realistic electrical conductivities based on finite-
rate chemical kinetics. Optimum inlet Mach number and
variation of electrical loading factor along the duct is ob-
tained using this electrical conductivity model.

4.1. Validation: Power law conductivity model

We validate our numerical scheme by comparing our results
with those presented by Carter. Carter discusses the results of
minimizing the volume of a MHD duct for a set of conditions
and power-law exponents given in Table 1.

Table 1
Optimization conditions for minimization of duct volume in Ref. [7]
Variable Value
y 1.667
v 0.4005
uy 0.25
T (t=v)+up) 0.65
w 4.0
y 7.0
z 0.6
X(v) 2.0
M V6
0.95¢
0.or — Thiswork

9 [ Carter' s Results

2085}

=

& [

5 [
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o

0.75F
L Inlet of duct
0.7 L 1 I ]
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. 0.7 0.8 0.9 1 1.1
Ratio of stagnation temperature along the duct
Fig. 1. Comparison of power ratio as a function of ratio of stagnation tempera-
ture.
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Optimum K (Carter)
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e
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07 075 08 085 09 005 1
Ratio of stagnation temperature along the duct

Log of electrical conductivity ratio

[=)

Fig. 2. Comparison of electrical conductivity for cases (a) and (b).

Carter points out that his conductivity model [Eq. (6)], ac-
counting for the effect of elevated electron temperatures on
electrical conductivity, is unable to optimize inlet Mach num-
bers. Hence the inlet Mach number is prescribed and held fixed
along the MHD generator. The optimum variation of electrical
loading factor (K) along the duct is obtained for a prescribed
inlet Mach number (M = V6, X = 2.0). For these conditions,
Carter considers two cases, namely, (a) optimization with K
constant along the channel (b) optimization with K varying
along the channel. We compare the results of our simulations,
obtained using our numerical scheme, with those presented by
Carter. Fig. 1 shows a comparison of the variation of the loading
factor K as a function of T/ Ty, (e™").

Fig. 2 shows a comparison of the variation of electrical con-
ductivity as a function T/ T, for cases (a) and (b).
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Table 2

Comparison of numerical results with Ref. [7]

Case This work Ref. [7]

Case (a) Constant K K =0.828 K =0.828

Case (b) Variable K K varies from 0.7505 K varies from 0.734
to 0.8936 to 0.8889

Reduction in duct 44.8% 44.75%

volume with variable K

Evaluating Eq. (19) and Eq. (32) in Ref. [7], it is possible to
compare the optimum duct volume for Case (a) and Case (b).
Carter’s work and our results both show that when K varies
axially, the optimum duct volume is only 44.75% of the opti-
mum duct volume for a constant power ratio case. Results from
Ref. [7] for these two cases are summarized in Table 2, along
with results obtained from our work.

It is seen that the results obtained using the ADS optimiza-
tion scheme match analytical results well.

4.2. Modified conductivity model

As pointed out earlier, Carter’s model for electrical con-
ductivity is unable to predict an optimum inlet Mach number.
This conductivity model predicts a continuous decrease in duct
size as the inlet Mach number increases. This is because the
model requires the conductivity to increase monotonically with
increasing Mach number. This model does not take into con-
sideration the reduction in conductivity due to a decrease in the
gas residence time at higher Mach numbers. We use our numer-
ical scheme to introduce an electrical conductivity model that
rectifies this deficiency in the model prescribed by Carter.

For MHD generators, ionization can be created using seed-
ing and/or other non-equilibrium processes such as e-beams,
AC and DC discharges, photo-ionization etc. The air chem-
istry induced by these non-equilibrium techniques create the
charged particles necessary for maintaining the electrical con-
ductivity. Chemistry reaction times scales can be comparable to
flow time-scales at low pressures and high Mach numbers. The
effect of residence time on electrical conductivity (Eq. 6) can be
modeled by a power-law expression of the form shown below.

T\Y/ p\~G@tw
— - - Xw/Zl_K w,—1tX
m=0(7) ()  @rEa-kre

=0, e—rX
where, o, is the electrical conductivity from Carter’s model.

X can be viewed as being proportional to the ratio be-
tween the chemistry and flow time-scales (flow time-scales in-
versely proportional to Mach number). Reaction rate constants
and the number densities (proportional to pressure) of the react-
ing species determine the chemistry time-scales (proportional
to 7). For a given set of operating conditions, the chemistry
time-scales are fairly constant. The flow time-scale of the gas
in the MHD generator, on the other hand, depends on the Mach
number. A condition where tX = 0, implies that the chem-
istry time-scales are much smaller than the flow time-scales
and hence the ionization chemistry is not affected by a change

ﬁzo; II
2 ‘
5 0
Els_-
= [ 2
s [ - AR
R
§10_-
'To‘ L
2 [
B 5r
3l
)]
o 1 1

[ 1 1 1
02 04 06 08 1 L 4
Chemistry time-scales (t) (arbitrary units)

Fig. 3. Variation of duct volume with t for two different inlet Mach numbers.

in flow time-scales (Mach number). This condition represents
the conductivity model proposed by Carter. A condition such
as 0 < X < 1, implies that the flow time-scales are compara-
ble to the chemistry time-scales and hence will have an effect
on the electrical conductivity. If tX > 1, the flow time scales
are smaller than the chemistry time scales, and hence the elec-
trical conductivity can be strongly impacted by it. This model
captures the behavior of electrical conductivity, wherein the in-
crease in conductivity due to the power law dependence on
Mach number (X*/?) is countered by a reduction in conduc-
tivity due to the decrease in residence time e~7%. We present
results describing the effect of t, for two values of prescribed
inlet Mach numbers, namely, M? =6 and M2 =38.

Fig. 3 shows the effect of v on the duct volume for the
two different Mach numbers. It is seen that for a given Mach
number, increasing t, increases the optimum duct volume.
This is to be expected, since for a given Mach number (flow-
time scale) higher 7, represents longer chemistry time-scales.
Longer chemistry time-scales for a given flow time-scale sim-
ply implies that the ionization kinetics are not able to proceed
to completion, leading to a reduction in the electrical conduc-
tivity and hence increase in the duct volume. Fig. 3 also shows
the opposing effect of Mach number and residence time on the
electrical conductivity and hence duct volume. For the particu-
lar case discussed here, for small values of T (t < 1.25) higher
inlet Mach numbers yield lower duct volume. As discussed ear-
lier, small values of 7, imply a lesser impact of residence time
on conductivity, hence the trends are as predicted by Carter’s
model. However, for T > 1.25, this trend is reversed. The op-
timized duct volume increases with Mach number, which sig-
nifies that conductivity is more strongly affected by residence
time.

4.2.1. Optimization of inlet Mach number and loading factor
for minimum duct volume

For a given value of 7, the dependence of conductivity on
Mach number incorporates two opposing effects (a) the power
law dependence on Mach number tends to increase conductivity
with increasing Mach numbers (b) the effect of residence time
tends to reduce conductivity with an increase in Mach number.
The effect of these two opposing effects makes it possible to
seek an optimum value of inlet Mach number for which the
duct volume (size) can be minimized.
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Fig. 4. Optimum duct shape for various inlet Mach numbers.
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We present results for a case with the same set of power
law exponents, vy and t values outlined in Table 1. We assume
7 = 1 in our conductivity model. The optimum value of inlet
Mach number for these conditions is M = 2.78. Fig. 4 shows
the duct shape obtained by plotting the cross-sectional length
versus the axial length for M> =6, M? =8 and M? = Mgpt.

Fig. 5 shows the variation of power ratio (K) for different in-
let Mach numbers. Variation of K with the optimum inlet Mach
number and for fixed inlet Mach numbers of M2 =6, M2 =8
and M? = 10 are shown. It is seen that for a given axial loca-
tion, the power ratio increases monotonically with inlet Mach
number.

Fig. 6 shows the cost function (duct volume) and the design
variable (inlet Mach number (left axis)) verses optimization cy-

Table 3

E-beam chemistry model with reaction rate constants [19]

No. Reactions A n Ea/R
1 e 4+20,=0," 40, 2.5E—42 (m®/s) 0 0
2 e 4+0,+Ny=0,"+Np 1.6E—43(m®/s) 0 0
3 e +0,T=0, 2.0E—12 (m3/s) 0 0
4 e +Np, T =N, 2.0E—12 (m3/s) 0 0
5 0" +0,=20;+¢" 2.2E—24 (m3/s) 0 0
6 0" +N; =0y +Np e~ 1.8¢—26 (m3/s) 0 0
7 0,7+ 0,1 +0,=30, 155E—37m®%/s) 0 0
8 0" 40,T+N;=20,+N;  1556-37(mf/s) O O
9 0, +N;t+0,=20,+N, 1.55B-37(m®/s) 0 0

cle number. From the variation of the cost function and design
variable, it is seen that after about 22 optimization cycles, the
cost function and Mach number converge to constant values
based on the convergence criterion described in Section 3.

4.3. Conductivity for e-beam air plasma

The conductivity models used in Sections 4.1 and 4.2 are
hypothetical and hence are not of much use in the actual de-
sign/optimization studies of MHD generators. The numerical
scheme presented in this paper can be used to study spatially
varying electrical conductivity based on finite-rate chemical ki-
netics. As an example, we present results for air plasmas with
e-beam induced ionization. We have chosen the e-beam chem-
istry model to compute the electrical conductivity because the
finite-rate chemistry model is experimentally validated [19].
The chemistry model has 9 elementary reactions and 6 species
and hence is representative of a fairly complex ionization mech-
anism to be included in calculation of the electrical conductiv-
ity. More detailed air plasma models can also be incorporated
in our framework for detailed computations of electrical con-
ductivity. However, for the purpose of demonstrating the effect
of electrical conductivity on the shape of the MHD generator,
the current model is adequate. The reaction rate constants and
reaction mechanism are obtained from Ref. [19] and is given in
Table 3.

The model includes processes for electron/ion production by
the e-beam (S,), electron—ion recombination, 3-body ion—ion
recombination, electron attachment in 3-body collisions to O»
and N, and electron detachment in collisions with O, and N».
Since the e-beam produces an electron-ion pair, the e-beam gen-
erated electrons and ions are added to the source term of species
continuity equations for electrons and ions as shown below,

dn,
a So + e
dn
o =St

where, w, and w; are the net rates of production of the elec-
trons and positive ions (N ™ and O, ™) respectively. The species
considered in this chemistry model are No™, O™, O™, O,
N2, e—.

For a given beam current and voltage, the electron/ion pro-
duction of the e-beam (S,) depends on density [20]. The effect
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Fig. 7. Variation of power ratio (a) and electrical conductivity (mho/m) (b) as
a function of Ty /Ty, for two different free-stream pressures.

of free-stream pressure and cross-sectional area on S, is mod-
eled by using an expression of the form

P
PaA(x)

where, S, = 1.5E24 #/m3 [19] evaluated at 1 atmosphere for a
beam current of 5 mA/cm? and beam voltage of 60 keV, A(x)
is the cross-sectional area at a location x in the duct, p is the
pressure and p, is 1 atmosphere.

The variation of pressure and cross-sectional area along the
duct gives rise to an axial variation of charged and neutral
species. This variation in species number density leads to an
axially varying electrical conductivity. In our numerical frame-
work, we solve the coupled finite-rate chemistry equations for
the chemistry model given in Table 3 at each axial location (cor-
responding to a given value of v). From the solution of these
coupled finite rate chemistry equations, the concentration of the
charged and neutral species at each location is known. Using the
expression for electrical conductivity [21], it is possible to com-
pute the electrical conductivity at a given axial location, which
is then used in the computation of the overall cost function.

Based on the e-beam model described above, we studied the
problem of minimizing the duct volume for vi = 0.4, y = 1.667
and T = 0.65 (same as values in Table 1) at two different pres-
sures, namely, P = 1 atm and P = 0.01 atm. The electron—ion
recombination rate for reactions 3 and 4 (Table 3) is 2.0 x
10712 m3 /s~ at 1 atm [19], while it is 2.0 x 10713 m3 /s~ at
0.01 atm [18]. Fig. 7 (a) and (b) shows the variation in power ra-
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Fig. 8. Optimized shape of the duct at P =1 atm and P = 0.01 atm.

tio and electrical conductivity (mho/m) along the duct (shown
as a function of T/ Ty,), computed using the e-beam chemistry
model.

It is seen that the reduction in S, at lower pressure leads to
a lower electrical conductivity, in spite of a lower electron-ion
recombination rate. Fig. 8 shows the shapes of the MHD ducts
at P =1 atm and 0.01 atm obtained by plotting the lengths
and cross-sectional areas. It is seen that the freestream pressure
impacts the shape of the MHD generator quite significantly.

The computing time required for shape optimization prob-
lem with the e-beam induced ionization was about 10 minutes
on a single CPU 2.5 GHz machine. Obtaining the species con-
centrations from a system of ODEs describing the finite-rate
chemical kinetics took a major portion of the total computing
time.

5. Summary and conclusions

The problem of optimizing the shape of a MHD duct for a
given fractional power output and pressure drop has been in-
vestigated numerically using the ADS optimization code. The
cost function was evaluated using the 1-D flow model as pre-
scribed by Carter. The numerical methodology used in this
work enables the use of any arbitrary electrical model for the
optimization problem under consideration. We have validated
our numerical scheme with the results presented by Carter. Fur-
thermore, we have used this numerical scheme to study the
shape optimization problem for MHD ducts with e-beam in-
duced ionization of the air stream. Axially varying electrical
conductivities were obtained by a finite-rate chemistry model
describing the e-beam induced ionization. The computing time
required for the shape optimization problem of a MHD duct
coupled with a finite-rate chemistry model describing the non-
equilibrium ionization is on the order of minutes. The versatility
and the short computing time make this numerical scheme a
viable tool for design/optimization studies in MHD generator
applications.
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